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Abstract— Most known quantum magnetometers have a periodic
signal at the output. By measuring its frequency, it is possible

to estimate the value of the magnetic field induction. In many | recever 7 —TPPS] ‘i el |
applications, such as aeromagnetic measurements, one needs to

increase the sampling rate, but this also increases the measurement .

error. The article describes two algorithms for obtaining frequency g agnetic s 2§
measurements depending on the characteristics of the equipment. g Sensor > 2 £
One averages the periods over one sample, the other averages the § 2% 1 £8
frequency over the same time gate. It is shown that the frequency o g% Stancard | | \

clock
source

estimate can perform better than the period estimate. As an exam-
ple, a 133Cs optically pumped sensor and a reference frequency of
1 GHz at a sampling rate of 1 kHz were considered. In the case of
an ideal input signal, the frequency estimation error corresponds
to £0.074 nT around some regular values every 9 nT, and the period
estimation error corresponds to +0.049 nT every 0.05 nT. In the case
of signal noise of 0.5 pT/v/Hz, the frequency estimation error corresponds to £0.058 nT, and for the period estimation error
it is +0.278 nT under the same conditions. The paper also describes how to use a satellite navigation system as a time

reference to ensure frequency estimation accuracy. In this case the uncertainty can be as low as 2:-10~8, or about 1 pT in
terms of magnetic field induction. All the ideas are illustrated by experiments. It is shown that for this frequency counter

a sampling rate of up to 1 kHz can be used with the considered sensors.

L
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Index Terms—frequency measurement, proton-precession magnetometer, optically pumped magnetometer, Larmor
precession

[. INTRODUCTION

EOMAGNETIC field measurement can be considered

one of the main geophysical methods for studying the
near-surface structure of the Earth since the middle of the
19t century [1]. At present, airborne, shipborne and ground
magnetic surveys are widely used for various purposes. In our
opinion, airborne survey is the most difficult task, and we
can give at least two reasons. First, trying to study a weak
anomaly of the geomagnetic field, it is better to measure
it as close as possible to the source of the field. Going
higher from the Earth’s surface, we need to have a more
sensitive instrument. Secondly, aircrafts move at a high speed.
Those used for airborne magnetics fly at 50-100 meters per
second, such as the Cessna-208. So the sample rate must be
high enough. Moreover, aircraft interference can have a big

from electric currents produced on conducting paths of the
airframe [2], [3]. But it is also necessary to exclude influence
at higher frequencies. For example, the electromagnetic field
of interference created by vibration and rotation of the rotor
blades in the case of a helicopter platform [4]. And in some
cases, an electromagnetic (EM) system is used together with
the on-board magnetic system. Such systems generate an
alternating magnetic field of large magnitude [5]. This means
that the sample rate must be even higher than it is necessary
for the survey itself.

This work is organized as follows. After a brief history of
magnetic measurements, we will describe the most appropriate
method for measuring frequency in relation to airborne mag-
netics. We then explain how to provide accurate frequency
measurements using the Global Navigation Satellite System

impact and have a very high frequency. Leliak’s well-known
model of aircraft interference effects accounts for permanent
magnetism from ferromagnetic parts in the aircraft, induced
magnetism created by the Earth’s magnetic field in soft-iron or
paramagnetic parts, and Eddy-current magnetic fields created
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(GNSS). Next, we proceed to the analysis of the frequency
estimation algorithm to obtain the best solution. Signal noise
influence is also analyzed. Finally, we present some experi-
mental results obtained with quantum magnetometers.

Il. HISTORICAL OVERVIEW

The history of airborne magnetics began in 1936 in the
USSR [6], and since then several generations of airborne mag-
netic sensors have been introduced. Starting with terrestrial
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inductors and fluxgate sensors, the first proton magnetometer
was introduced in the second half of the 20t century [1]. Its
airborne version was launched in 1964 in Canada [7].

A. Proton-Precession Magnetometers

In a proton precession magnetometer (PPM), the idea is
to measure the frequency of the free precession of polarized
protons (hydrogen nuclei). After the polarizing field is re-
moved, the proton precesses around the magnetic field vector
like a heavy gyroscope in a gravitational field. The precession
angular velocity is known as Larmor Precession Frequency,
which is related to the magnetic field as follows [8], [9]:

Jp = - Bo, (1)

where By is the magnitude of the magnetic induction vector
measured in nT, f, is the precession frequency in Hz, v, =
1/23.487... nT~1:s™! is the gyromagnetic ratio of protons.
The exact value of 7, depends on the specific substance
used in the sensor. In any case, for the geomagnetic field,
the frequency range is 0.8—4.3 kHz, approximately 20,000-
100,000 nT.

The quality of the signal depends on the volume of the
sensor. The larger the volume, the more stable the signal is, but
the sensor becomes less tolerant to the field gradient, which is
a serious problem in the case of airborne applications. Due to
the weak signal of the airborne sensors, they had a sensitivity
of about 0.1-1 nT at a sampling rate of 1-3 times per second.
Note that polarization and measurement in PPM are performed
sequentially, one after the other.

In 1980s an Overhauser PPM was developed [7]. It used
a special substance to get much more stable signal. As a
result, in Overhauser magnetometer the signal can be measured
simultaneously with polarization. Thus, such sensors have a
sensitivity of 0.01 nT at a 1-10 Hz sampling rate. Neverthe-
less, they did not gain much popularity, since optically pumped
magnetometers (OPMs) appeared around the same time.

B. Optically Pumped Magnetometers

For the manufacture of OPM, a cell filled with vapor from
elements with suitable spaced magnetic energy sublevels is
needed. The distance between the sublevels is a function
of an external static magnetic field, which is known as the
Zeeman effect. In modern practice, cesium, potassium or
rubidium are most often found. Sodium and helium are also
mentioned in [1]. A beam of light with circular polarization
is used to “pump” the atoms in the cell. The beam is often
generated by a lamp with the same element as the light
source. When all atoms are already excited, the cell becomes
transparent to light, and the photosensitive detector registers
the maximum current. Now, beacause of the coil around
the cell which generates radio-frequency (RF) waves, the
cell becomes opaque again. But the energy or frequency of
the wave must correspond exactly to the energy difference
between the sublevels, which, according to Zeeman, in the
first approximation is proportional to the magnitude of the
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magnetic field. Thus, as for PPM (1), there is a relationship
between the magnetic induction and the Larmor frequency:

f e = Te- By, 2
where the gyromagnetic ratio v, depends on the element e.
For example, '33Cs (let’s denote it by e = Cs) has

vos = 3.498577 nT~!.s~! [10]. This means that for the
geomagnetic field the frequency range for fo is 70-350 kHz.
If 85Rb is used (e = Rb85), then Yrpss = 4.66743 nT .51
[11], [12]. The frpss range is slightly shifted in relation
to the previous one — 90-470 kHz. Three other isotopes
87Rb, 3K and 'K have very close gyromagnetic ratios:
Yros7 = 6.99583 nT.71-s™1, k39 = 7.00466 nT~!-s~! and
Yi41 = 7.00533 nT~1.s~1 [12]. Thus, the frequency range for
these elements is 140-700 kHz. In any case, the frequencies
are about two orders higher than for PPM, which means that
the sampling rate can theoretically be increased to 1 kHz and
even more.

Currently, there are two most common types of such
sensors. The quantum My sensor measures the frequency
of forced oscillations of the transverse component of the
total atomic magnetic moment [13] (relative to the external
magnetic field). Mz OPM measures the component parallel to
the external magnetic field. The M, sensors are very accurate,
and the Mx devices are characterized by a fast response [14].
The main reason for the high speed of the Mx sensor is that
it does not use frequency modulation of RF field to find the
resonance line center. It can be made self-oscillating when
the photocurrent amplifier is directly connected to the RF
field coil via a feedback loop [13]. In the case of the My,
magnetometer, its operation speed and sensitivity are related
to the width of the RF field resonance line. Typically, to ensure
high sensitivity during the measurement of the center of a
symmetric Mz resonance, the line width is limited to an order
of tens of hertz, which limits its bandwidth by the same value.

Self-oscillating *3Cs Mx OPM sensors have gained great
popularity in recent decades and have already proven their
effectiveness in airborne geophysics for both total field mea-
surements and gradiometry [15]. Such sensors are also ef-
fectively used for autonomous aircraft navigation [16]. We
can list Canadian Scintrex [17] sensors, US Geometrics [18]
sensors, Russian Radar-mms [19] sensors. In this study we
will consider only this type of sensors.

[1l. FREQUENCY MEASUREMENT METHOD

Having carried out the analysis, we can state that there are
three main approaches to measuring the Larmor frequency.

o The period of the measured signal is compared with
the period of the internal clock generating some fixed
standard frequency [10], [20], [21]. The main problem
with this method is that the result depends on the quality
of the reference clock. It must be more stable than the
magnetic sensor signal and its frequency must be high
enough for the desired sample rate. The method will be
described in the following chapters.

o The internally generated harmonic signal is compared
to the Larmor signal and fine tuned to have the same
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frequency and phase [13]. This synthetic signal is well
known, so if we use its frequency as the output, it will
not contain any noise. The problem is that the tuning
algorithm has a limited bandwidth and it is difficult for it
to track very fast field changes. This feature makes this
approach less suitable for airborne applications.

o The Larmor signal after analog-to-digital conversion
(ADC) is analyzed in the frequency domain to find the
maximum. This idea has been applied to Overhauser
sensors [22]. The method utilizes high precision ADC to
obtain the discrete sequence of precession signal, and the
discrete sequence is processed by Fast Fourier Transform
(FFT) algorithm to determine the rough frequency of
precession signal. Obviously, the higher the sampling
rate, or the shorter the measurement time, the less detailed
spectrum we get after applying the FFT. The spectrum
zoom algorithm according to [22] interpolates the spec-
trum and provides 10~¢ accuracy at 4096 points or more.
In another paper, less optimistic numbers are given, about
103 for 1024 points [23]. The same hesitation is shown
in [21]. Thus, the method is still under study.

Thus, we will follow the first approach. We will start with
the counting algorithm itself, assuming that the signal noise
is neglectable. We then look at how signal noise affects the
estimate.

The main idea is shown in Fig. 1 and is used in many
modern magnetometers, both OPM [10], [20] and PPM [24],
[25]. The frequency meter must have an internal clock that
generates pulses of high and stable frequency f.;.x, they are
shown in the lower graph. By dividing it, we can get fixed
gates with a period of T} (upper graph in Fig. 1). In each
gate, it is necessary to count the number of periods of the
measured signal.

The measured Larmor signal is a sine wave. By controlling
when it crosses zero, the frequency meter generates pulses
for counting (plot measured signal in Fig. 1).To eliminate
the influence of noise near zero, the comparison level is
different for an increasing and decreasing signal, see Schmitt
trigger [26]. The processor counts the number of Larmor
periods N in the current gate and the number of standard
clock periods n, or period T' = n/ fecr. As can be seen in
Fig. 1, the real gate period 7' almost always differs from the
fixed period T’ by the difference between 7 and 71, as shown
in the top two charts:

T:Tf—l—T—Tl. 3)

An estimate of the Larmor period TLP and the corresponding
frequency fr, can be easily obtained from the quantities
described above:

- 5 N

Trp = fun="7 )

Note that the value of T can be considered as the sum of

all measured periods T}, j = 1,..., N covered by the current
gate. So we can rewrite (4) as
I DA S T N
Trp= =5 fo=cn— (5)
Zj:l T;
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Fig. 1. Sequence diagram of the frequency measurement method.
(standard clock) An internally generated reference clock used by the
processor to sample Larmor signal zero crossings and for a counter.
(measured signal) An idealized Larmor signal and a corresponding logic
signal to measure its period. (tfrue gate) Signal synchronized with the
Larmor wave, T is the time remaining from the previous gate between
the last zero crossing in the previous gate and the start of the current
gate, 71 is the time between the last zero crossing in the current
gate and the start of the next gate, T is the length of the sampled
Larmore waves in the current gate, measured by internal clock. (fixed
gate) A field sampling strobe that determines the sampling rate of field
measurements, T’ is the measurements period.

Thus, TLI, is the average period value during the sampling
gate. So, the result can be considered as applying of the Least
squares method (LSM) to estimate the period.

The relative error in (4) obviously depends on the frequency
of the reference clock f.;. and the sample rate of the Larmor
signal measurements. To estimate the error, we can assume
that the true sample gate is equal to the fixed sample gate at
the frequency fs, so the error is [10]:

AfL ( fs s )
€| - , . (6)

f L f clck f clck

In the following sections, we will discuss two ways to
ensure accuracy of frequency measurements. First, we use
GNSS measurements to stabilize the reference clock. And
then we analyze the possibility of using information about the
duration of each of the Larmor periods covered by the current
sampling gate.

6pr =

IV. SATELLITE ATOMIC CLOCK

Modern airborne surveys are always carried out using some
kind of GNSS receiver in order to know exactly the coordi-
nates of the measurements. But it is well known that the GNSS
solution evaluates not only the position, but also the time [27].
Since the coordinates and the clock error are estimated from
the same set of measurements of the propagation time of
electromagnetic signals, the error in units of time remains the
same for the two quantities. Given the root mean square (RMS)
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positioning error o, = 5 m [27], it is easy to calculate the
time error oy = o,/c ~ 17 ns, c is the speed of light. GNSS
receivers are capable of outputting a signal synchronized with
the satellites’ atomic clocks. It’s called Pulse Per Second (PPS)
and is typically generated at 1 Hz.

The PPS signal can be used in various applications. For
example, to synchronize different devices [28]. Since all
receivers have the same RMS oy, its value determines the
synchronization accuracy.

Let’s use the standard clock of the frequency meter to
measure the duration of 1 s in the PPS signal. In this case, the
resulting counter value is an estimate of the true value of the
reference clock frequency fdgk € (ferek — 1, ferer +1). Now,
using it to calculate T' = n/ fqcx in (4), we can be sure that
the relative RMS error of the frequency estimate is within the
following limits:

§€(—-1.7-107%,1.7-107%). (7)

Suppose in (6) the sample frequency fs; > 1 Hz. Then we
can neglect the 1 error (7) of PPS signal measurements.

Thus, if we have a not very accurate (and not very expen-
sive) internal clock, we can use PPS to reduce the error to
¢ in (7). Changes in the constellation of satellites may result
in an outlier, but it will be of the same magnitude. In the
case of OPM measurements, this corresponds to a value of
about 1 pT. Unfortunately, it slightly exceeds the sensitivity
of OPM [17]-[19]. Even though the sensors are accurate to a
few hundred pT, there will be a step in the output. For this
reason, we apply a filter to eliminate outliers.

Fig. 2 shows the results of measuring the PPS signal. This
experiment was conducted using the GlobalSat SiRF-Star III
ET-332 receiver. The top graph shows the number of visible
satellites. The system has just been turned on. Initially, the
GNSS receiver does not see any satellites. Around 17:35:50
it starts processing the signals, but three satellites are not
enough to get a four-dimensional solution containing time and
position. The solution to the navigation problem appears only
after 17:36:00, when the fourth satellite comes into view.

number of satellites

3: ...................................

6}

4

2

of

magnetic induction, nT
50000.4 ————————1
50000.3 1
50000.2 \
50000.1 t
50000.0 - .
17:35:24 17:36:00 17:36:36 17:37:12 17:37:48 17:38:24
time

Fig. 2. Implementation of atomic clock correction. (top) Number of

visible satellites used to calculate position and time, a minimum of
4 satellites is required for solution. (bottom) Estimation of magnetic
induction (nT) after clock correction. The horizontal axis represents time.

The bottom graph in Fig. 2 represents the value of the field.
The input is the constant frequency of 174,928.85 Hz, which
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corresponds to the induction value of 50,000 nT (Cesium).
However, before 17:36:00 the value is incorrect, and we see
an error of about 10~2, or 0.4 nT. Moreover, the value changes
by 0.02 nT or about 5 - 10~7 in one minute due to warming
up. Both of these numbers indicate the limited accuracy and
stability of our 1 GHz counter. But when the PPS signal
appears, the field estimate takes on the true value.

The presented experimental result practically proves the
effectiveness of using the PPS signal.

V. OPTIMIZATION OF THE FREQUENCY ESTIMATE

As we have already mentioned, information about the length
of each wave covered by the sample gate can be used to
estimate the Larmor frequency. Depending on which filter is
applied, the value of the estimation error will be different.
Let’s try to formulate and solve an optimization problem to
obtain the best estimate of the frequency f Lf- ~

Each Larmor wave number ¢ has its period estimate 73,
if we put NV =1 in (4). Our goal is to get an estimate for
one sample. Assume that the real frequency f is the same
for all waves. Then, adding several Larmor periods 77, and
multiplying by f, we get the number of Larmor waves. For
example,

J
Y Tof=j. ®)
=1

In our case T; # TJ,. To approximate (8) we can use the
following form

J
<Zﬂ+to> f=3 ©)
i=1
We need to add %, because the counting start time is almost
always later than the start of the wave. This is clearly seen in
Fig. 1, the plot of the measured signal.

Let’s make the following notations in (9)

J
b=tof, t;=> T;
i=1

Our goal is to find the unknowns b and f. The idea is to use
the LSM for this. Then we can consider the following function
and find its minimum:

(10)

)

N
J(f,0) =Y (t;f +b—j)° — min.
j=1

The minimum is obtained by solving the following system:

N N N
£ B4t =Ygt (11)
j=1 j=1 j=1
al N(N +1)
f-th—&—er:iz . (12)

Jj=1
Since we don’t really need to know the value of b, let’s express

it from (12) and substitute it in (11). The frequency estimate
can then be calculated as:

P Zjvﬂ (j_%)tj

5
N N
Zj:l t? - % (Zj:l tj)

(13)
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Analyzing (13), we see that the numerator contains a digital
filter [29], and if we group the pairs ty —tn/2, IN—1—T(n/2)-1
and so on, we will see that we are averaging N/2 Larmor
period estimates. Each of them is evaluated at half of the
sample gate. N is the total number of Larmor waves. But
the analysis of the denominator is more difficult. According to
the dimensional analysis, it contains an estimate of the squared
Larmor period. It also uses all measured periods, but is difficult
to analyze.

We can say for sure that the values of pr in (5) and fL ¥
in (13) are different. From the point of view of computational
speed, we see the main advantage of (5). All we need to do in
this case is to perform an integer sum every Larmor period and
one floating point division for every output sample. Thus, in
the case of the 33Cs sensor at 1 kHz sample rate, a maximum
of 0.35 million integer operations and 1 thousand floating point
operations per second are performed. In the case (13) there are
three additional sums and two multiplications for each Larmor
period. This gives about 2 million integer operations and 2
thousand floating point operations per second.

We can simplify the calculations a little maintaining accu-
racy. Let us substitute ¢; by j/ f s in the denominator of (13).
The error of such a substitution will be of the order of the
squared frequency estimation error. Having the well-known
formulas

al N+1 N, N(N+1)(2N+1)
Z ,Zy s . (14)
j=1 j=1
we get
N
1 12 ( N+1>
— a5 (- ) (15)
frs N2—1; 2

Here we have only about 1 million integer operations and 1
thousand floating point operations per second. Equation (15)
is used by the developers of PPM sensors [30], [31].

To understand the advantages of (13), we must examine
estimation errors.

VI. ERROR ANALYSIS
First, let’s rewrite (5) in a form equivalent to (13):

N

frp= — (16)

For both (13) and (16) we can use the following error
definition:

tj:(j+5j)'TL7 5]‘6 (—

, 17
feick” felck 1n

Using (17) for j = N in (16) after Taylor expansion neglecting
O(6%), we get
fL

I fL>.

frp=fr— (18)

Let’s do the same for fL ¢ in (13). After all calculations, we
get

gl[_M]J

+2ZJ -6 o)

fry=fr- N3 (19)
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Here we have used (17), and formulas (14). After Taylor
expansion and by neglecting of 0(5?) from (19) we obtain

S (22 o

j=1

;o fr 12
fry=fi—§ |72

and here we have the linear digital filter that we have already
mentioned in the previous section. Note, that the first order
error will be the same for equation (15).

The worst case for (18) we have already seen in (6).
For (20) the situation is even worse. Consider the case when
the estimate of the first N/2 periods has the minimum error,
while for the second N/2 periods the error is maximum. Then
the sum in (20) gives about NV 2 /4, which leads to

P
f L f clck f clck
However, it should not be concluded that the algorithm (13)
is less accurate than (16). Note that the case presented above
is highly unusual. To have such distributed errors, the field
must be changing during the sample gate. But this contradicts
the assumption of a constant field. Assume that the Larmor
period is k/ feier. Then the counter value for it will be either
[k] or [k] + 1, [] is meaning rounding down to the nearest
integer. This means that the worst case for (20) is when, for
example, the estimate of the first N/2 periods has zero error,
and the error is maximum for the second N/2 periods. Then
the sum in (20) gives about N?2/8, which leads to
AfL c <_ 3fs 3fs )
fL 2fclck ’ 2fclck ’
Now the main question is how often do we encounter
such undesirable conditions. Consider a piecewise constant
increasing field to ignore its changes during one sample gate.
For the case (16) we will always have the best estimate
when kfr, /N = feek, K € N. To be more specific, for an
OPM sensor with a f,.. = 1 GHz counter and a 1 kHz
sample rate, we will have this situation every 0.05 nT near
an induction value of 50,000 nT. But the worst values will be
next to the best ones. If we slightly change the period, sooner
or later for one of the samples we will get the counter value
changed by one, or the frequency changed by 1/ fcc. This is
shown in the top graph in Fig. 3. The value of 50,000.037 nT
is estimated with an error of 0, -0.031 or 0.02 nT, and the
error in the estimate of 50,000.039 nT can reach 0.048 nT.
In the case of (13), to get the same poor value, we need the
Larmor period to be a multiple of the reference clock period,
ie. kfr, = foer, k € N. For the same conditions we will have
it only every 8.75 nT. It can be seen from the lower graph in
Fig. 3 that the error of the frequency LSM exceeds the error
of the period LSM only once in the interval of 8.75 nT. The
value of 50,005.335 nT is estimated with zero error by both
algorithms, and the error of the value of 50,005.337 nT can
be 0.049 nT and 0.074 nT for (16) and (13), respectively.
But what do we get in the case of a noisy signal? Fig. 4
compares the estimation error in the case of an ideal Larmor
wave and a noisy one. It shows an evaluation result near the
value of 50,005.335 nT. The top graph shows the errors for an

21

Ofry = (22)
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ideal signal. We have £0.049 nT error by (16) and +0.074 nT
by (13). Adding the signal noise about 0.5 pT/v/Hz, we get
40.278 nT error by (16) and only £0.058 nT by (13). We can
conclude, that randomization has made it much more difficult
to get the wrong counter value. Additional statistics for the
range of induction 50,000-50,020 nT are presented in Table I.

_ [50000.087] [50000.038]

IIL‘

50000.04

nT
50000.00 50000.01 50000.05nT

0.08 1oy
0.04
0.00

-0.04
nT
50000

,,,,,,

......

50002 50004 50006 50008 50010 50012 50014 nT
Fig. 3. Error in estimating magnetic induction (nT, vertical axis)
depending on induction value (nT, horizontal axis) according to the
algorithm (16) — dark blue line, Lp, and according to the algorithm (13)
— dark yellow line, Lf. (top) The induction changes in the range
50,000.00-50,000.05 nT; zones of fixed input values of 50,000.037 nT
and 50,000.039 nT are marked. (bottom) The induction changes in the

range 50,000-50,014 nT.

500055 50005.30 50005.35 500055 nT

— Lp

50005.40
— Lf

50005.45

50005.45 50005.50 nT

50005.40

50005.25  50005.30 50005.35

Fig. 4. Error in estimating magnetic induction (nT, vertical axis)
depending on induction value (nT, horizontal axis) according to the
algorithm (16) — dark blue line, Lp, and according to the algorithm (13)
— dark yellow line, Lf in the range of 50005.25-50005.5 nT. (top) Ideal
input signal, no noise. (bottom) Noisy input signal, Gaussian noise with
spectral density 0.5 pT/v/Hz.

Thus, even in the case of an ideal input signal, the sampling
error for the presented LSM frequency estimate will in most
cases be much smaller than for the LSM period estimate. With
a real sensor, OPM or PPM, random noise will be added to
the Larmor signal. If the Larmor period noise is comparable
t0 1/ feiek, it will be effectively filtered by the algorithm (13).
We can see that the peak-to-peak error range even improves
for frr, but not for fr,.

Discussing this result, we can say that in the case of the
period estimation algorithm (5) the noise will appear in the
same form as the ¢ error in the equation (18). The same can be
said about the frequency estimation algorithm: the noise will
be averaged using the filter (20). In the presence of Gaussian
noise, the average of N independent implementations will
always have a lower RMS than that of a single implementation.
Moreover, in case of a constant input frequency, the frequency
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TABLE |
INDUCTION ESTIMATION STATISTICS
value pr fo
ideal signal
peak-to-peak +50 pT +74 pT
RMS 20 pT 4 pT
noisy signal
peak-to-peak +285 pT +58 pT
RMS 91 pT 16 pT

estimation algorithm (13) is the best in terms of least squares
error [32].

It turns out that it is quite natural to associate estimation
errors with sensor noise. It can be seen from (6), (22) that the
estimation error itself is directly proportional to the sampling
frequency fs. As for the sensor, if its noise is close to white
noise, then its value will increase more slowly, proportional
to v/fs. So we can find the intersection:

op-\fs=DBo-k fs

fclck7

where the left part represents the sensor noise with op
(nT/v/Hz), while the right part is the root mean square error
of estimation of the field induction value By (nT) with « as
the scale factor depending on the algorithm.

From (23) we can obtain the maximum sampling rate that
can be used without the estimation error exceeding the sensor
noise:

(23)

2 2
f _ fclck . 9B
smaxr —

k? BY

(24)

having ~ calculated from Table I for period estimation as
kp = 0.4 and for frequency estimation as xy = 0.08. Please
note that we have B? in the denominator, so it is better to
calculate (24) for the largest induction value — 100,000 nT.
The two functions for k, and «f are presented in fig. 5 in case
of Scintrex CS-3 sensor with a noise of 0.6 pT/\/PE [17].

VIl. EXPERIMENTS

All results presented in this section are obtained using
the least squares method for frequency estimation (13) and
satellite clock correction. The first experiment was carried
out with a 1 GHz counter of the GT-MAG series of the
Russian company “Geotechnologies” [33]. The induction was
estimated using the formula (13). We compared the noise of
two Scintrex CS-3 [17] and one Radar-mms DM [19] sensors
at a sampling rate of 1 kHz. Having similar characteristics, in
practice they showed some differences.

All recordings were made far from any sources of industrial
noise. However, as we see in Fig. 6, 7, there was a 50 Hz
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Internal clock rate, MHz Fig. 7. Synchronous induction measurements in frequency domain,
sample rate 1 kHz, accumulation for 4 s: Sp_CS3 (green) and Sp_CS3B
Fig. 5.  The sample rate limits (Hz, vertical axis) for the period (red) — Scintrex CS-3 sensors, Sp.DM (blue) — Radar-mms DM

estimation algorithm (16) (dashed line) and for the frequency estimation
algorithm (13) (solid line) as a function of the reference clock rate (MHz,
horizontal axis) in the case of Scintrex CS3 sensor noise for the field
induction value of 100,000 nT.

component. Fig. 6 shows a short interval in the time domain.
The amplitude at 50 Hz is about 1 nT peak-to-peak. All sensors
show very similar signals, except that the DM looks a bit
noisier.

53057

53056 ¢
53055 |

53054 ¢

53053 | | | | | | | |
0 20 40 60 80 _ 100 120 140 160 180 200
nT time, ms
— Mag_CS3 —— Mag_CS3B — Mag_DM
Fig. 6. Synchronous induction measurements in time domain (nT)

as functions of samples, sample rate is 1 kHz: Mag_-CS3 (green) and
Mag_CS3B (red) — Scintrex CS-3 sensors, Mag-DM (blue) — Radar-
mms DM sensor.

Fig. 7 shows the frequency domain representation. Record-
ings on the interval of 4096 ms were converted to the
frequency domain using the FFT. In addition to the sensor
noise, the effect of the 50 Hz frequency is noticeable on
the odd harmonics (50, 150, 250, 350 Hz). The resulting
curves additionally include an estimation error (the same for
all three sensors). Having RMS of 4 pT at 1 kHz we get
about 0.1 pT/v/Hz, so we can ignore this value for both sensor
types. For the CS-3 sensors (Sp_CS3 and Sp_CS3B) we see
that the spectral density of the signals varies in the range of
0.2-2 pT/v/Hz, with an average of 0.7 pT/v/Hz. For the DM
sensor (Sp_DM) it varies within 1-3 pT/v/Hz, with an average
of 2.6 pT/\/IE . Thus, for CS-3 the noise is about 0.6 pT/\/IE,
and for the DM sensor it is at the level of 2.5 pT/\/IE.

Note that for both types of Cesium OPM sensors, the noise
level is fairly flat in the presented frequency band. This means
that we can indeed consider the sensor noise as white noise of
the appropriate intensity, at least in this frequency band. This
makes us more confident in applying the optimal frequency
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sensor.

estimation algorithm for such sensors.

The results of the second experiment are from an airborne
survey where the same equipment — Scintrex CS-3 and GT-
MAG counter — were used together with the EQUATOR
EM system [34]. This system generates magnetic field pulses
to induce currents in the ground and estimates subsurface
conductivity using secondary field measurements. Each pulse
has a half-sine shape, duration is about 1.9 ms. After a pause
of about 4.5 ms, it is repeated in the opposite direction. Fig. 8
shows the moment when the EM system is turned on. We can
see that the pulse amplitude is about 30 nT. Actually it is
about 250 nT, but since the field vector of the EM system is
not collinear with the vector of the Earth field, we can’t see
it in scalar measurements.

— Raw — Filtered

o UL
TR

nT
@
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[
nN
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(2]
(=]
(2]
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o

00:50:07.0

00:50:03.0 ' 00:50 04‘0 00:50:05.5 00:50:08.0
Time
Fig. 8. In-flight induction measurements (nT) in the presence of an

electromagnetic field source: raw signal sampled at 926 Hz (dark blue
lines) and filtered signal output at 26 Hz (dark yellow line). (top) Time
range 00:50:05.25-00:50:05.75, the moment the EM system is turned
on. (bottom) Time range 00:50:03-00:50:08.

The question is whether, with such a rapidly changing field,
up to 10° nT/s, the algorithm or the sensor itself will generate
any additional noise. In this experiment, after measuring the
induction at a sampling rate of 926 Hz, we independently
averaged every three periods of the EM field (77 Hz) using a
simple rectangular filter.

We can say that we successfully separate the low frequency
and the high frequency parts of the magnetic field, since
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TABLE Il
FILTERING ALTERNATING FIELD

value raw filtered
EM field off
peak-to-peak +0.18 nT +0.02 nT
RMS/v/Hz 2.0 pT 2.2 pT
EM field on
peak-to-peak 447 nT +0.02 nT
RMS/v/Hz 760 pT 2.4 pT

the magnetic field noise for the filtered value remains ap-
proximately the same before and after turning on the EM
field. Fig. 9 shows data for five minutes of flight, where the
bottom graph is the non-normalized fourth difference of the
filtered value. This parameter is usually analyzed to estimate
aeromagnetic survey noise. The fourth difference is almost
not affected by the moment the EM field is turned on. We
have £0.36 nT before the start and +0.38 nT after it. This is
consistent with the noise statistics presented in Table II. The
noise before the appearance of the EM field is 2-3 pT/v/Hz,
both with and without filtering. It is four times the noise of
the sensor because it is mounted on a moving platform. In the
presence of the EM field, the noise of the filtered data is the
same, and without filtering it is 760 pT/\/PE.

— Raw

—— Filtered

nT
o o
o

T 00:51:00 00:52:12

Time

00:48:36 00:49:48

Fig. 9. In-flight induction measurements in the presence of an elec-
tromagnetic field source: the moment the EM system is turned on is
marked with a red line; (top) raw signal sampled at 926 Hz (dark blue
lines) and filtered signal output at 26 Hz (dark yellow line), nT; (bottom)
fourth difference, not normalized, nT.

VIII. CONCLUSION

We have considered two algorithms, both based on LSM.
One averages the periods over one sample, the other averages
the frequency over the same time gate.

We have shown that in the case of an ideal input signal,
for a 133Cs OPM sensor and a 1GHz reference frequency at 1
kHz sampling rate there will be a frequency estimation error of
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40.074 nT that is 50% larger than a period estimation error of
£0.049 nT, but this occurs only at certain values of magnetic
induction, approximately every 9 nT. In all other cases, it is
much lower, about an order of magnitude.

In the case of a noisy signal, these poor values disappear as
they need a very specific distribution of Larmor periods. As a
result, frequency estimation always performs better than period
estimation: the frequency estimation error of £0.058 nT in the
case of 0.5 pT/v/Hz noise is 5 times better than the period
estimation error of +0.278 nT under the same conditions.
This is why it is necessary to analyze the relationship between
sensor noise and estimation error. The maximum sample rate
formula shows the dependence on the square of the reference
clock frequency.

We have also described a way to ensure absolute measure-
ment accuracy using GNSS signals. If the GNSS receiver has
a PPS output, the uncertainty can be as low as 2 - 1078, or
about 1 pT.
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